Selective Killing of Melanoma Cells With Non-Thermal Atmospheric Pressure Plasma and p-FAK Antibody Conjugated Gold Nanoparticles

نویسندگان

  • Byul Bo Ra Choi
  • Jeong Hae Choi
  • Jin Woo Hong
  • Ki Won Song
  • Hae June Lee
  • Uk Kyu Kim
  • Gyoo Cheon Kim
چکیده

Melanomas are fast growing high-mortality tumors, and specific treatments for melanomas are needed. Melanoma cells overexpress focal adhesion kinase (FAK) compared to normal keratinocytes, and we sought to exploit this difference to create a selectively lethal therapy. We combined gold nanoparticles (GNP) with antibodies targeting phosphorylated FAK (p-FAK). These conjugates (p-FAK-GNP) entered G361 melanoma cells and bound p-FAK. Treatment with p-FAK-GNP decreased the viability of G361 cells in a time dependent manner by inducing apoptosis. To maximize the preferential killing of G361 cells, non-thermal atmospheric pressure plasma was used to stimulate the GNP within p-FAK-GNP. Combined treatment with plasma and p-FAK-GNP showed much higher lethality against G361 cells than HaCaT keratinocyte cells. The p-FAK-GNP induced apoptosis over 48 hours in G361 cells, whereas plasma and p-FAK-GNP killed G361 cells immediately. This study demonstrates that combining plasma with p-FAK-GNP results in selective lethality against human melanoma cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of non-thermal atmospheric pressure plasma on MDA-MB-231 breast cancer cells

Cold atmospheric plasma (CAP) has received great attention due to its noteworthy ability, and has also been widely studied over few decades in physics, biology and medicine. The purpose of this study is to evaluate the cold atmospheric pressure plasma effects on the proliferation of breast cancer cells. MDA-MB-231 was used for this experiment. MDA-MB-231 cells were cultured in 24-well plate and...

متن کامل

Effect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells

Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...

متن کامل

Photo-thermal therapy of bladder cancer with Anti-EGFR antibody conjugated gold nanoparticles.

The aim of this study was to enhance the effectiveness of photo thermal therapy (PTT) in the targeting of superficial bladder cancers using a green light laser in conjunction with gold nanoparticles (GNPs) conjugated to antibody fragments (anti-EGFR). GNPs conjugated with anti-EGFR-antibody fragments were used as probes in the targeting of tumor cells and then exposed to a green laser (532nm), ...

متن کامل

Enhancement of the killing effect of low-temperature plasma on Streptococcus mutans by combined treatment with gold nanoparticles

BACKGROUND Recently, non-thermal atmospheric pressure plasma sources have been used for biomedical applications such as sterilization, cancer treatment, blood coagulation, and wound healing. Gold nanoparticles (gNPs) have unique optical properties and are useful for biomedical applications. Although low-temperature plasma has been shown to be effective in killing oral bacteria on agar plates, i...

متن کامل

Kinetics of cell death triggered photothermally using folate-conjugated gold nanoparticles and various laser irradiation conditions in cancer cells

Introduction: In this study, we explore in detail cell-specific targeting efficacy of nano-photo-thermal therapy (NPTT) method and the resulting responses that are induced by variable laser intensities and exposure times in cancer cells to induce selective apoptosis. We delineate the synthesis of a high-yielding synthetic F-AuNPs by tailoring the surface of gold nanoparticles ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2017